Exercise 9

Solve Example 1.6.2 with the initial data

$$
f(x)= \begin{cases}x & \text { if } 0 \leq x \leq \frac{\ell}{2}, \\ \ell-x & \text { if } \frac{\ell}{2} \leq x \leq \ell\end{cases}
$$

Solution

The initial boundary value problem that needs to be solved is the following:

$$
\begin{aligned}
& u_{t}=\kappa u_{x x}, \\
& u(0, t)=0, \\
& u(\ell, t)=0, \\
& u(x, 0)=f(x)= \begin{cases}x & 0 \leq x<\ell, t>0 \\
\ell-x & \frac{\ell}{2} \leq x \leq \ell\end{cases} \\
& \hline
\end{aligned}
$$

The PDE and the boundary conditions are linear and homogeneous, which means that the method of separation of variables can be applied. Assume a product solution of the form, $u(x, t)=X(x) T(t)$, and substitute it into the PDE and boundary conditions to obtain

$$
\begin{gather*}
X(x) T^{\prime}(t)=\kappa X^{\prime \prime}(x) T(t) \quad \rightarrow \quad \frac{T^{\prime}(t)}{\kappa T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}=k \tag{1.9.1}\\
u(0, t)=0 \quad \rightarrow \quad X(0) T(t)=0 \quad \rightarrow \quad X(0)=0 \\
u(\ell, t)=0 \quad \rightarrow \quad X(\ell) T(t)=0 \quad \rightarrow \quad X(\ell)=0
\end{gather*}
$$

The left side of equation (1.9.1) is a function of t, and the right side is a function of x. Therefore, both sides must be equal to a constant. Values of this constant and the corresponding functions that satisfy the boundary conditions are known as eigenvalues and eigenfunctions, respectively. We have to examine three special cases: the case where the eigenvalues are positive $\left(k=\mu^{2}\right)$, the case where the eigenvalue is zero $(k=0)$, and the case where the eigenvalues are negative $\left(k=-\lambda^{2}\right)$. The solution to the PDE will be a linear combination of all product solutions.

Case I: Consider the Positive Eigenvalues $\left(k=\mu^{2}\right)$

Solving the ordinary differential equation in (1.9.1) for $X(x)$ gives

$$
\begin{aligned}
X^{\prime \prime}(x) & =\mu^{2} X(x), \quad X(0)=0, X(\ell)=0 \\
X(x) & =C_{1} \cosh \mu x+C_{2} \sinh \mu x \\
X(0) & =C_{1} \quad \rightarrow \quad C_{1}=0 \\
X(\ell) & =C_{2} \sinh \mu \ell=0 \quad \rightarrow \quad C_{2}=0 \\
X(x) & =0
\end{aligned}
$$

Positive values of k lead to the trivial solution, $X(x)=0$. Therefore, there are no positive eigenvalues and no associated product solutions.

Case II: Consider the Zero Eigenvalue ($k=0$)

Solving the ordinary differential equation in (1.9.1) for $X(x)$ gives

$$
\begin{aligned}
X^{\prime \prime}(x) & =0, \quad X(0)=0, \quad X(\ell)=0 . \\
X(x) & =C_{1} x+C_{2} \\
X(0) & =C_{2} \quad \rightarrow \quad C_{2}=0 \\
X(\ell) & =C_{1} \ell=0 \quad \rightarrow \quad C_{1}=0 \\
X(x) & =0
\end{aligned}
$$

$k=0$ leads to the trivial solution, $X(x)=0$. Therefore, zero is not an eigenvalue, and there's no product solution associated with it.

Case III: Consider the Negative Eigenvalues $\left(k=-\lambda^{2}\right)$
Solving the ordinary differential equation in (1.9.1) for $X(x)$ gives

$$
\begin{aligned}
& \quad X^{\prime \prime}(x)=-\lambda^{2} X(x), \quad X(0)=0, X(\ell)=0 . \\
& X(x)=C_{1} \cos \lambda x+C_{2} \sin \lambda x \\
& X(0)=C_{1} \quad \rightarrow \quad C_{1}=0 \\
& X(\ell)=C_{2} \sin \lambda \ell=0 \\
& \sin \lambda \ell=0 \quad \rightarrow \quad \lambda \ell=n \pi, n=1,2, \ldots \\
& X(x)=C_{2} \sin \lambda x
\end{aligned} \quad \lambda_{n}=\frac{n \pi}{\ell}, n=1,2, \ldots .
$$

The eigenvalues are $k=-\lambda_{n}^{2}=-\left(\frac{n \pi}{\ell}\right)^{2}$, and the corresponding eigenfunctions are $X_{n}(x)=\sin \frac{n \pi x}{\ell}$. Solving the ordinary differential equation for $T(t), T^{\prime}(t)=-\kappa \lambda^{2} T(t)$, gives $T(t)=A e^{-\kappa \lambda^{2} t}$. The product solutions associated with the negative eigenvalues are thus $u_{n}(x, t)=X_{n}(x) T_{n}(t)=B \sin \left(\lambda_{n} x\right) e^{-\kappa \lambda_{n}^{2} t}$ for $n=1,2, \ldots$.

According to the principle of superposition, the solution to the PDE is a linear combination of all product solutions:

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} e^{-\kappa\left(\frac{n \pi}{\ell}\right)^{2} t} \sin \frac{n \pi x}{\ell} .
$$

The coefficients, B_{n}, are determined from the initial condition,

$$
\begin{equation*}
u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{\ell}=f(x) . \tag{1.9.2}
\end{equation*}
$$

Multiplying both sides of (1.9.2) by $\sin \frac{m \pi x}{\ell}$ (m being a positive integer) gives

$$
\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{\ell} \sin \frac{m \pi x}{\ell}=f(x) \sin \frac{m \pi x}{\ell}
$$

Integrating both sides with respect to x from 0 to ℓ gives

$$
\int_{0}^{\ell} \sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{\ell} \sin \frac{m \pi x}{\ell} d x=\int_{0}^{\ell} f(x) \sin \frac{m \pi x}{\ell} d x
$$

$$
\sum_{n=1}^{\infty} B_{n} \underbrace{\int_{0}^{\ell} \sin \frac{n \pi x}{\ell} \sin \frac{m \pi x}{\ell} d x}_{=\frac{\ell}{2} \delta_{n m}}=\int_{0}^{\ell} f(x) \sin \frac{m \pi x}{\ell} d x
$$

It is thanks to the orthogonality of the trigonometric functions that most terms in the infinite series vanish upon integration. Only the $n=m$ term remains, and this is denoted by the Kronecker delta function,

$$
\begin{gathered}
\delta_{n m}= \begin{cases}0 & n \neq m \\
1 & n=m\end{cases} \\
B_{n}\left(\frac{\ell}{2}\right)=\int_{0}^{\ell} f(x) \sin \frac{n \pi x}{\ell} d x \\
B_{n}=\frac{2}{\ell} \int_{0}^{\ell} f(x) \sin \frac{n \pi x}{\ell} d x .
\end{gathered}
$$

Now we substitute the initial data given in the problem statement for $f(x)$ to evaluate B_{n}.

$$
\begin{gathered}
B_{n}=\frac{2}{\ell}\left[\int_{0}^{\frac{\ell}{2}} x \sin \frac{n \pi x}{\ell} d x+\int_{\frac{\ell}{2}}^{\ell}(\ell-x) \sin \frac{n \pi x}{\ell} d x\right] \\
B_{n}=\frac{2}{\ell}\left[\frac{\ell}{n^{2} \pi^{2}}\left(-\frac{1}{2} n \pi l \cos \frac{n \pi}{2}+\ell \sin \frac{n \pi}{2}\right)+\frac{\ell^{2}}{2 n^{2} \pi^{2}}\left(n \pi \cos \frac{n \pi}{2}+2 \sin \frac{n \pi}{2}\right)\right] \\
B_{n}=\frac{2}{\ell}\left(\frac{2 \ell^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi}{2}\right) \\
B_{n}=\frac{4 \ell}{n^{2} \pi^{2}} \sin \frac{n \pi}{2}
\end{gathered}
$$

Therefore, the solution is

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{4 \ell}{n^{2} \pi^{2}} \sin \frac{n \pi}{2} e^{-\kappa\left(\frac{n \pi}{\ell}\right)^{2} t} \sin \frac{n \pi x}{\ell} .
$$

